
A CASP-Based Approach to PDDL+ Planning

Marcello Balduccini
Drexel University

marcello.balduccini@gmail.com

Daniele Magazzeni
King’s College London

daniele.magazzeni@kcl.ac.uk

Marco Maratea
University of Genoa

marco@dibris.unige.it

Abstract

PDDL+ is an extension of PDDL that makes it pos-
sible to model planning domains with mixed discrete-
continuous dynamics. In this paper we present a new
approach to PDDL+ planning based on the paradigm of
Constraint Answer Set Programming (CASP), an exten-
sion of Answer Set Programming that supports efficient
reasoning on numerical constraints. We provide an en-
coding of PDDL+ models into CASP problems. The en-
coding can handle non-linear hybrid domains, and rep-
resents a solid basis for applying logic programming
to PDDL+ planning. As a case study, we consider an
implementation of our approach based on CASP solver
EZCSP and present very promising results on a set of
PDDL+ benchmark problems.

1 Introduction

Planning in hybrid domains is a challenging prob-
lem that has found increasing attention in the planning
community, mainly motivated by the need to model
real-world domains. Indeed, in addition to classical
planning, hybrid domains allow for modeling continu-
ous behavior with continuous variables that evolve over
time. PDDL+ (Fox and Long 2006) is the extension of
PDDL that allows for modelling domains with mixed
discrete-continuous dynamics, through continuous pro-
cesses and exogenous events.

Various techniques and tools have been proposed to
deal with hybrid domains (Penberthy and Weld 1994;
McDermott 2003; Li and Williams 2008; Coles et al.
2012; Shin and Davis 2005). More recent works include
(Bryce et al. 2015), which presents an approach based
on Satisfiability Modulo Theory (SMT) and restricted
to a subset of the PDDL+ features, and (Bogomolov et
al. 2014; Bogomolov et al. 2015) that combines hybrid
system model checking and planning, but is only lim-
ited to proving plan non-existence.

To date, the only approach able to handle the full
PDDL+ is thediscretise and validateapproach imple-
mented in UPMurphi (Della Penna et al. 2009). There,
the continuous model is discretised and forward search

Copyright © 2015, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

is used to find a solution, which is then validated against
the continuous model using VAL (Fox, Howey, and
Long 2004). If the solution is not valid, the discretisa-
tion is refined and the process iterates. The main draw-
back of UPMurphi, though, is the lack of heuristics that
strongly limits its scalability, and hence its applicability
to real case studies.

This motivates the need for finding new ways to han-
dle PDDL+. To this aim, in this paper we present a new
approach to PDDL+ planning based on Constraint An-
swer Set Programming (CASP) (Baselice, Bonatti, and
Gelfond 2005), an extension of Answer Set Program-
ming (ASP) (Gelfond and Lifschitz 1991) supporting
efficient reasoning on numerical constraints. We pro-
vide an encoding of PDDL+ models into CASP prob-
lems, which can handle linear and non-linear domains,
and can deal with PDDL+ processes and events. This
contribution represents a solid basis for applying logic
programming to PDDL+ planning, and opens up the use
of CASP solvers for planning in hybrid domains.

We describe how the different components of a
PDDL+ domain can be encoded into CASP. In our en-
coding, continuous invariants are checked at discretised
timepoints, and following the discretise and validate ap-
proach (Della Penna et al. 2009), VAL is used to check
whether the found solutions are valid or whether more
timepoints need to be considered. As a case study, we
use the CASP solverEZCSP(Balduccini 2009). Experi-
ments performed on PDDL+ benchmarks show that our
approach outperforms the state-of-the-art PDDL+ plan-
ners dReal and UPMurphi.

The paper is structured as follows. We begin with
preliminaries on PDDL+ planning and CASP. In Sec-
tion 3, we present our encoding, followed by a discus-
sion of the results of our experiments. Finally, in Sec-
tion 6, we draw conclusions and discuss future direc-
tions of work.

2 Background

In this section, we provide background on the main top-
ics covered by the paper. We first introduce PDDL+
planning, and then ASP and CASP.

Hybrid systems can be described as hybrid au-
tomata (Henzinger 1996), that are finite state automata
extended with continuous variables that evolve over
time. More formally, we have the following:

Definition 1 (Hybrid Automaton) A hybrid automa-
ton is a tuple H = (Loc,Var, Init,Flow,Trans, I),
where

• Loc is a finite set of locations, Var= {x1, . . . ,xn} is a
set of real-valued variables, Init(`)⊆ Rn is the set of
initial values for x1, . . . ,xn for all locations`.

• For each location`, Flow(`) is a relation over the
variables in Var and their derivatives of the form

ẋ(t) = Ax(t)+u(t),u(t) ∈U ,

where x(t) ∈ Rn, A is a real-valued nxn matrix and
U ⊆ Rn is a closed and bounded convex set.

• Trans is a set of discrete transitions. A discrete tran-
sition t∈ Trans is defined as a tuple(`,g,ξ , `′) where
` and `′ are the source and the target locations, re-
spectively, g is the guard of t (given as a linear con-
straint), andξ is the update of t (given by an affine
mapping).

• I(`)⊆ Rn is an invariant for all locations̀ .

An illustrative example is given by the hybrid au-
tomaton for a thermostat depicted in Figure1. Here,
the temperature is represented by the continuous vari-
able x. In the discrete location corresponding to the
heater being off, the temperature falls according to the
flow conditionẋ = −0.1x, while when the heater is on,
the temperature increases according to the flow condi-
tion ẋ = 5−0.1x. The discrete transitions state that the
heatermaybe switched on when the temperature falls
below 19 degrees, and switched off when the tempera-
ture is greater than 21 degrees. Finally, the invariants
state that the heater can be on (off)only if the temper-
ature is not greater than 22 degrees (not less than 18
degrees).

Off

ẋ =−0.1x

x≥ 18

On

ẋ = 5−0.1x

x≤ 22
x > 21

x < 19

x = 20

Figure 1: Thermostat hybrid automaton

Planning is an AI technology that seeks to select
and organise activities in order to achieve specific goals
(Nau, Ghallab, and Traverso 2004). A planner uses a
domain model, describing the actions through their pre-
and post-conditions, and an initial state together with a
goal condition. It then searches for a trajectory through
the induced state space, starting at the initial state and
ending in a state satisfying the goal condition. In richer
models, such as hybrid systems, the induced state space

can be given a formal semantics as a timed hybrid au-
tomaton, which means that a plan can synchronise ac-
tivities between controlled devices and external events.

2.1 PDDL+ Planning
Definition 2 (Planning Instance) A planning instance
is a pair I = (Dom,Prob), where Dom= (Fs,Rs,As,
Es,Ps,arity) is a tuple consisting of a finite set offunc-
tion symbolsFs, a finite set ofrelation symbolsRs, a fi-
nite set of (durative)actionsAs, a finite set ofeventsEs,
a finite set ofprocessesPs, and a function arity map-
ping all symbols in Fs∪Rs to their respective arities.

The triple Prob= (Os, Init,G) consists of a finite set
of domain objectsOs, theinitial state Init, and thegoal
specification G.

Following (Bogomolov et al. 2014), for a given plan-
ning instanceI , astateof I consists of a discrete compo-
nent, described as a set of propositionsP calledBoolean
fluents, and a numerical component, described as a
set of real variablesv called numerical fluents. In-
stantaneous actions are described through preconditions
(which are conjunctions of propositions inP and/or nu-
merical constraints overv, and define when an action
can be applied) and effects (which define how the ac-
tion modifies the current state).Instantaneousactions
and events are restricted to the expression of discrete
change. Events have preconditions as for actions, but
they are used to model exogenous change in the world,
therefore they are triggered as soon as the preconditions
are true. A process is responsible for the continuous
change of variables, and is active as long as its precon-
ditions are true.Durativeactions have three sets of pre-
conditions, representing the conditions that must hold
when it starts, the invariant that must hold throughout
its execution and the conditions that must hold at the
end of the action. Similarly, a durative action has three
sets of effects: effects that are applied when the action
starts, effects that are applied when the action ends and
a set of continuous numeric effects which are applied
continuously while the action is executing.

Definition 3 (Plan) A plan for a planning instance I=
((Fs,Rs,As,Es,Ps,arity),(Os, Init,G)) is a finite set of
triples (t,a,d) ∈ R∗ × As× R∗, where t is a timepoint,
a is an action and d is the action duration.

Note that processes and events do not appear in a plan,
as they are not under the direct control of the planner.

2.2 Answer Set Programming
Let Σ be a signature containing constant, function and

predicate symbols. Terms and atoms are formed as in
first-order logic. A literal is an atoma or its classical
negation¬a. A rule is a statement of the form:

h← l1, . . . , lm,not lm+1, . . . ,not ln (1)

where h and li ’s are literals andnot is the so-called
default negation. The intuitive meaning of the rule is

2

that a reasoner who believes{l1, . . . , lm} and has no rea-
son to believe{lm+1, . . . , ln}, has to believeh. The for-
mal semantics, defined in terms of models of a set of
rules, is given later. We callh the head of the rule,
and{l1, . . . , lm,not lm+1, . . . ,not ln} thebodyof the rule.
Given a ruler, we denote its head and body byhead(r)
andbody(r), respectively. A rule with an empty body is
called afact, and indicates that the head is always true.
In that case, the connective← is often dropped.

A programis a pair〈Σ,Π〉, whereΣ is a signature and
Π is a set of rules overΣ. Often we denote programs by
just the second element of the pair, and let the signature
be defined implicitly.

A setA of literals isconsistentif no two complemen-
tary literals,a and¬a, belong toA. A literal l is satis-
fied by a consistent set of literalsA (denoted byA |= l)
if l ∈ A. If l is not satisfied byA, we writeA 6|= l . A
set{l1, . . . , lk} of literals is satisfied by a set of literalsA
(A |= {l1, . . . , lk}) if eachli is satisfied byA.

Programs not containing default negation are called
definite. A consistent set of literalsA is closedunder
a definite programΠ if, for every rule of the form (1)
such that the body of the rule is satisfied byA, the head
belongs toA. This allows us to state the semantics of
definite programs.

Definition 4 A consistent set of literals A is ananswer
set of definite programΠ if A is closed under all the
rules ofΠ and A is set-theoretically minimal among the
sets closed under all the rules ofΠ.

To define answer sets of arbitrary programs, we in-
troduce thereductof a programΠ with respect to a set
of literals A, denoted byΠA. The reduct is obtained
from Π by: (1) deleting every ruler such thatl ∈ A for
some expression of the formnot l from the body ofr,
and(2) removing all expressions of the formnot l from
the bodies of the remaining rules. The semantics of ar-
bitrary ASP programs can thus be defined as follows.

Definition 5 A consistent set of literals A is ananswer
setof programΠ if it is an answer set ofΠA.

To simplify the programming task, variables (identi-
fiers with an uppercase initial) are allowed in ASP pro-
grams. A rule containing variables (anon-groundrule)
is viewed as a shorthand for the set of itsground in-
stances, obtained by replacing the variables by all pos-
sible ground terms. Similarly, a non-ground program is
viewed as a shorthand for the program consisting of the
ground instances of its rules.

There are also shorthands, which we introduce infor-
mally to save space. A rule whose head is empty is
calleddenial, and states that its body must not be satis-
fied. A choice rulehas a head of the form

λ{m(~X) : Γ(~X)}μ

where~X is a list of variables,λ , μ are non-negative
integers, andΓ(~X) is a set of literals that may include
variables from~X. A choice rule intuitively states that,
in every answer set, the number of literals of the form
m(~X) such thatΓ(~X) is satisfied must be betweenλ and
μ. If not specified,λ , μ default, respectively, to 0,∞.
For example, given a relationq defined by{q(a),q(b)},
the rule:

1{p(X) : q(X)}2.

intuitively identifies three possible sets of conclusions:
{p(a)}, {p(b)}, and{p(a), p(b)}.

2.3 Constraint ASP

CASP integrates ASP and Constraint Programming
(CP) in order to deal with continuous dynamics. In this
section we provide an overview of CP and of its inte-
gration in CASP.

The central concept of CP is theConstraint Satisfac-
tion Problem (CSP)(Rossi, van Beek, and Walsh 2006),
which is formally defined as a triple〈X,D,C〉, where
X = {x1, . . . ,xn} is a set of variables,D = {D1, . . . ,Dn}
is a set of domains, such thatDi is the domain of vari-
ablexi , andC is a set of constraints. Asolutionto a CSP
〈X,D,C〉 is a complete assignment (i.e. where a value
from the respective domain is assigned to each variable)
satisfying every constraint fromC.

There is currently no widely accepted, standard-
ized definition of CASP. Multiple definitions have been
given in the literature (Ostrowski and Schaub 2012a;
Mellarkod, Gelfond, and Zhang 2008a; Baselice, Bon-
atti, and Gelfond 2005; Balduccini 2009). Although
largely overlapping, these definitions are all somewhat
distinct from each other.

To ensure generality of our results, we introduce a
simplified definition of CASP, defined next, which cap-
tures the common traits of the above approaches. The
main results of this paper will be given using our sim-
plified definition of CASP. Later, in Section4, we intro-
duce a specific CASP language to discuss the use case
and the experimental results.

Syntax.In order to accommodate CP constructs, the
language of CASP extends ASP by allowingnumeri-
cal constraintsof the form x ./ y, where./∈ {<,≤,
=, 6=,≥,>}, andx and y are numerical variables1 or
standard arithmetic terms possibly containing numeri-
cal variables, numerical constants, and ASP variables.
Numerical constraints are only allowed in the head of
rules.

Semantics.Given a numerical constraintc, let τ(c)
be a function that mapsc to a syntactically legal ASP
atom andτ−1 be its inverse. We say that an ASP atom
a denotesa constraintc if a = τ(c). Functionτ is ex-
tended in a natural way to CASP rules and programs.
Note that, for every CASP programΠ, τ(Π) is an ASP
program.

1Numerical variables are distinct from ASP variables.

3

Finally, given a setA of ASP literals, letγ(A) be the
set of ASP atoms fromA that denote numerical con-
straints. The semantics of a CASP program can thus
be given by defining the notion of CASP solution, as
follows.

Definition 6 A pair 〈A,α〉 is a CASP solutionof a
CASP programΠ if-and-only-if A is an answer set of
τ(Π) andα is a solution toτ−1(γ(A)).

3 Encoding PDDL+ Models into CASP
Problems

In this section we describe our encoding of PDDL+
problems in CASP. Our approach is based on research
on reasoning about actions and change, and action
languages (Gelfond and Lifschitz 1993; Reiter 2001;
Chintabathina, Gelfond, and Watson 2005). It builds
upon the existing SAT-based (Kautz and Selman 1992)
and ASP-based planning approaches (Lifschitz 1999),
and extends them to hybrid domains.

In reasoning about actions and change, the evolution
of a domain over time is often represented by atransi-
tion diagram(or transition system) that represents states
and transitions between states through actions. Tra-
ditionally, in transition diagrams, actions are instanta-
neous, and states have no duration and are described by
sets of Boolean fluents. Sequences of states character-
izing the evolutions of the domain are represented as
a sequence ofdiscrete time steps, identified by integer
numbers, so that step 0 corresponds to the initial state
in the sequence. We extend this view to hybrid domains
according to the following principles:

• Similarly to PDDL+, a state is characterized by
Boolean fluents and numerical fluents.

• The flow of actual time is captured by the notion
of global time(Chintabathina, Gelfond, and Watson
2005). States have a duration, given by the global
time at which a state begins and ends. Intuitively,
this conveys the intuition that time flows “within” the
state.

• The truth value of Boolean fluents only changes upon
state transitions. That is, it is unaffected by the flow
of time “within” a state. On the other hand, the value
of a numerical fluent may change within a state.

• The global time at which an action occurs is identi-
fied with the end time of the state in which the action
occurs.

• Invariants are checked at the beginning and at the end
of every state in which durative actions and processes
are in execution. Thus, in order to guarantee sound-
ness we exploit a discretize and validate approach.

Next, we describe the CASP formalization of
PDDL+ models. We begin by discussing the correspon-
dence between global time and states, and the repre-
sentation of the values of fluents and of occurrences of
actions.

The global time at which the state at stepi begins is
represented by numerical variablestart(i). Similarly,
the end time is represented byend(i). The truth value
of Boolean fluentf at discrete time stepi is represented
by literalholds(f , i) if f is true and by¬holds(f , i) oth-
erwise. For everynumerical fluent n, we introduce two
numerical variables, representing its value at the begin-
ning and at the end of time stepi. The variables are
v initial(n, i) andv f inal(n, i), respectively. The occur-
rence of an actiona at time stepi is represented by an
atomoccurs(a, i).

Additive fluents, whose value is affected byin-
creaseanddecreasestatements of PDDL+, are repre-
sented by introducing numerical variables of the form
v(contrib(n,s), i), wheren is a numerical fluent,s is a
constant denoting a source (e.g., the action that causes
the increase or decrease), andi is a time step. The ex-
pression denotes the amount of the contribution to flu-
ent n from sources at stepi. Intuitively, the value of
n at the end of stepi (encoded by numerical variable
v f inal(n, i)) is calculated from the values of the indi-
vidual contributions. Next, we discuss the encoding of
the domain portion of a PDDL+ problem.

3.1 Domain Encoding
In the following discussion, ASP variablesI , I1, I2

denotes time steps.

Actions. The encoding of the preconditions of ac-
tions varies depending on their type. Preconditions on
Boolean fluents are encoded by means of denials. For
example, a denial:

← holds(unavail(tk1), I),occurs(re fuel with(tk1), I).

states that refuel tanktk1 must be available for the cor-
responding refuel action to occur. Preconditions on nu-
merical fluents are encoded by means of numerical con-
straints on the corresponding numerical variables. For
example, a rule

v f inal(height(ball), I) > 0←
occurs(drop(ball), I).

states that, ifdrop(ball) is selected to occur, then the
height of the ball is required to be greater than 0 in the
preceding state.

The effects of instantaneous actions on Boolean flu-
ents are captured by rules of the form:

holds(f , I +1)← occurs(a, I).

where f is a fluent anda is an action. The rule states
that f is true at the next time stepI + 1 if the action
occurs at (the end of) stepI . The effects on numerical
fluents are represented similarly, but the head of the rule
is replaced by a numerical constraint. For example, the
rule:

v initial(height(ball), I +1) = 10←
occurs(li f t (ball), I).

states the action of lifting the ball causes its height to be

4

10 at the beginning of the state following the occurrence
of the action. If the action increases or decreases the
value of a numerical fluent, rather than setting it, then
a corresponding variable of the formv(contrib(n,s), i)
is used in the numerical constraint. The link between
contributions and numerical fluent values is established
by axioms described later in this section.

Durative actions. A durative actiond is encoded as
two instantaneous actions,start(d) and end(d). The
start (end) preconditions ofd are mapped to precon-
ditions of start(d) (end(d)). The overall conditions
are encoded with denials and constraints, as described
above in the context of preconditions. Start (end) ef-
fects are mapped to effects ofstart(d) andend(d) ac-
tions. Additionally,start(d) makes fluentinprogr(d)
true. The continuous effects ofd are made to hold in
any state in whichinprogr(d) holds. For example, if
a re f uel action causes the level of fuel in a tank to in-
crease linearly with the flow of time, its effect may be
encoded by:

v(contrib(f level, re f uel), I) = end(I)−start(I)←
holds(inprogr(d), I).

The above rule intuitively states that, at the end of any
state in whichd is in progress, the fuel level increases
proportionally to the duration of the state. The value
of the fluent is updated from its set of contributionsS
by the general constraint, shown next, which applies to
every fluentF :

v f inal(F, I) = v initial(F, I)+∑s∈Sv(contrib(F,s), I).

The fact that the value of numerical fluents stays the
same by default throughout the time interval associated
with a state is modeled by a rule:

v f inal(F, I) = v initial(F, I)← not ab(F, I).

which applies to every numerical fluentF . Intuitively,
this rule must not be applicable when the value ofF is
being changed by an action, process, or event. This is
enforced by adding a rule that makesab(F, I) true. For
example, for a durative actiond that affects a numerical
fluent f , the encoding includes a rule:

ab(f , I)← holds(inprogr(d), I).

In a similar way, the contribution to a numerical fluent
by every source is assumed to be 0 by default. This is
guaranteed by the rule:

v(contrib(F,S), I) = 0)← not ab(F, I).

To keep track of the duration of a durative action when
the action spans multiple time steps, a rule records the
global time at whichd begun:

stime(d) = end(I)← occurs(start(d), I).

Action end(d) is modeled so that it is automatically
triggered afterstart(d). Finding the time at which the
end action occurs, both in terms of time step and global

time, is part of the constraint problem to be solved. The
following rule:

1{occurs(end(d), I2) : I2 > I1}1←
occurs(start(d), I1).

ensures thatend(d) will be triggered at some timepoint
following start(d). Finally, requirements on the du-
ration of durative actions are encoded using numerical
constraints: if the PDDL+ problem specifies that the du-
ration ofd is δ , the requirement is encoded by a rule:

end(I)−stime(d) = δ ← occurs(end(d), I).

Intuitively, any CASP solution of the corresponding
program will include a specification of whenend(d)
must occur, both in terms of time step and global time.

Processes and Events.The encoding of processes
and events follows the approach outlined earlier, respec-
tively, for durative and instantaneous actions. However,
their triggering is defined by PDDL+’smustsemantics,
which prescribes that they are triggered as soon as their
preconditions are true. In CASP, this is captured by a
choice rule combined with numerical constraints. Intu-
itively, when the Boolean conditions of the process are
satisfied, the choice rule states the process will start un-
less it is inhibited by unsatisfied numerical conditions.
Constraints enforced on the numerical conditions cap-
ture the latter case. Consider a process correspond-
ing to a falling object, with preconditions¬held and
height> 0. The choice rule:

1{occurs(start(f alling), I),
is f alse(height> 0, I)}1← holds(¬held, I).

entails two possible, equally likely, outcomes: the ob-
ject will either start falling, or be prevented from doing
so by the fact that conditionheight> 0 is false. The
second outcome is possible only if the height is indeed
not greater than 0, which is enforced by the constraint:

v f inal(height, I)≤ 0← is f alse(height> 0, I).

Given an arbitrary process, the corresponding choice
rule lists an atomis f alse(∙, I) for every numerical con-
dition, and the encoding includes a constraint on the
value ofv f inal(n, I) corresponding to the complement
of that condition. The treatment of events is similar.
The encoding is completed by the following statements:

start(I +1) = end(I).

v initial(F, I +1) = v f inal(F, I).

holds(F, I +1)← holds(F, I),not holds(¬F, I +1).
holds(¬F, I +1)← holds(¬F, I),not holds(F, I +1).

The first rule ensures that there are no gaps between the
time intervals associated with consecutive states. The
others handle fluent propagation from a state to the next.

5

3.2 Problem Encoding

The problem portion of the PDDL+ problem is en-
coded as follows.

Initial state. The encoding of the initial state consists
of a set of rules specifying the values of fluents inP∪v
at step 0.

Goals.The encoding of a goal consists of a set of de-
nials on Boolean fluents and of constraints on numerical
fluents, obtained similarly to the encoding of precondi-
tions of actions, discussed earlier.

Given a PDDL+ planning instanceI , by Π(I) we de-
note the CASP encoding ofI . Next, we turn our atten-
tion to the planning task.

3.3 Planning Task

Our approach to planning leverages techniques from
ASP-based planning (Lifschitz 2002; Balduccini, Gel-
fond, and Nogueira 2006). The planning task is speci-
fied by the planning module,M, which consists of the
single rule:

{occurs(A, I),occurs(start(D), I)}.

whereA,D are variables ranging over instantaneous ac-
tions and durative actions, respectively. The rule intu-
itively states that any action may occur (or start) at any
time step.

It can be shown that the plans for a given maximum
time step for a PDDL+ planning instanceI are in one-to-
one correspondence with the CASP solutions ofΠ(I)∪
M. The plan encoded by a CASP solutionA can be
easily obtained from the atoms of the formoccurs(a, i)
and from the value assignments to numerical variables
start(i) andend(i).

It is also worth noting the level of modularity of our
approach. In particular, it is straightforward to perform
other reasoning tasks besides planning (e.g., a hybrid
of planning and diagnostics is often useful for applica-
tions) by replacing the planning module by a different
one, as demonstrated for example in (Balduccini and
Gelfond 2003b).

4 Case Study

For our case study, we have focused on a spe-
cific instance of CASP, calledEZCSP(Balduccini 2009;
Balduccini and Lierler 2013). In EZCSP, numerical con-
straints are encoded as arguments of the special relation
required, e.g. required(start(I +1) = end(I)). Encod-
ings of thegenerator(Bogomolov et al. 2014) andcar
domains (Bryce et al. 2015) were created as described
above, and the architecture of theEZCSPsolver was ex-
panded to ensure soundness of the algorithm (see be-
low). The complete encodings are omitted due to space
considerations. Rather, to illustrate our approach, we
present a fragment of the encoding of processgenerate
from thegeneratordomain, whose PDDL+ representa-
tion is shown in Figure2. The fragment captures the
invariants and the change of fuel level. The process has

two continuous effects: it decreases the fuel level (the
expression(* #t 1) states that the change is con-
tinuous and linear with respect to time) and increases
the value of variablegenerator time , which keeps
track of how long the generator ran. The choice ofgen-
eratewas motivated by the fact that the representation
of processes is arguably one of the most challenging as-
pects of encoding PDDL+ in CASP. The invariant on
the maximum fuel level is encoded by twoEZCSPrules
(atomtankcap(∙) determines the capacity of the tank):

required(v initial(f uel level, I)≤ TC)←
tankcap(TC).

required(v f inal(f uel level, I)≤ TC)←
tankcap(TC).

The (negative) contribution to the generator’s fuel level
is modeled by:

required(v(contrib(f uel level,generate), I) =
−1∗ (end(I)−start(I))

)← holds(inprogr(generate), I).

From an algorithmic perspective, theEZCSP solver

(:process generate
:parameters (?g - generator)
:condition

(and
(over all

(>= (fuelLevel ?g) 0)
)
(over all

(<= (fuelLevel ?g) (capacity ?g))
)

)
:effect

(and
(decrease (fuelLevel ?g) (* #t 1))
(increase (generator_time ?g)

(* #t 1))
)

)

Figure 2: PDDL+ process from the Generator domain

computes CASP solutions of a programΠ by iteratively
(1) using an ASP solver to find an answer setA of Π,
and (2) using a constraint solver to find the solutions of
the CSP encoded byA. To account for the discretize and
validate approach mentioned earlier, we have extended
theEZCSPsolver with a validation step. In the extended
architecture, shown in Figure3, if step (2) is successful,
the tool VAL is called to validate the plan before return-
ing it. If VAL finds the plan not to be valid, it returns
which invariant was violated and at which timepoint. If
that happens, theexpansionprocess occurs, where the
encoding is expanded with (1) new numerical variables
that represent the value of the involved numerical flu-

6

ents at that timepoint, and (2) numerical constraints en-
forcing the invariant on them. The CASP solutions for
the new encoding are computed again2, and the process
is iterated until no invariants are violated.

To illustrate the expansion process, let us consider a
durative actiond causing fluentf to increase byι(Δ),
whereΔ is elapsed time. Suppose invariantf < c is vi-
olated at a timepointt that falls within the time interval
associated with time stepi. The encoding is then ex-
panded by:

required(v′(F, i) =
v initial(F, i)+v′(contrib(F,s), i)).

required(
v′(contrib(F,s), i)) = ι(t−start(i))

)← holds(inprog(d), i).

required(v′(F, i) < c).

5 Experimental Results

We performed an empirical evaluation of the perfor-
mance achieved with our approach. The comparison
was with the state-of-the-art PDDL+ planners dReal
(Bryce et al. 2015) and UPMurphi. Although SpaceEx
(Bogomolov et al. 2014) is indeed a related approach,
it was not included in the preliminary comparison be-
cause it is focused on proving only plan non-existence.
The experimental setup used a virtual machine running
in VMWare Workstation 12 on a computer with an i7-
4790K CPU at 4.00GHz. The virtual machine was
assigned a single core and 4GB RAM. The operating
system was Fedora 22 64 bit. The version ofEZCSP
used was 1.7.43, with gringo 3.0.54 and clasp 3.1.35

as grounding tool and ASP solver, and B-Prolog 7.56

and GAMS 24.5.77 as constraint solvers. The former
was used for all linear problems and the latter for the
non-linear ones. The other systems used were dReal
2.15.118, configured as suggested by its authors, and
UPMurphi 3.0.29.

The experiments were conducted on the linear and
non-linear versions of thegeneratorandcar domains.

The comparison with dReal was based on finding a
single plan with a given maximum time step, as dis-
cussed in (Bryce et al. 2015). The results are sum-
marized in Table1. The comparison with UPMurphi

2Only the solutions of the CSP need to be recomputed.
3http://mbal.tk/ezcsp/
4http://sourceforge.net/projects/

potassco/files/gringo/
5https://sourceforge.net/projects/

potassco/files/clasp/
6http://www.picat-lang.org/bprolog/
7http://www.gams.com/
8http://dreal.github.io/
9https://github.com/gdellapenna/

UPMurphi/

was based on the cumulative times for finding a sin-
gle plan by progressively increasing the maximum time
step. The results are reported in Table2. In the ta-
bles, entries marked “-” indicate a timeout (threshold
600 sec). Entries marked “*” indicate missing entries
due to licensing limitations (see below). It should be
noted that none of the instances triggered the expansion
process described in the previous section, given that all
plans were found to be valid by VAL. Next, we discuss
the experimental results obtained for each domain.

Generator. Our encoding uses Torricelli’s law (v =√
2gh) to model the transfer of liquid. This is a more

complex model than the one used in the dReal encod-
ing, but is more physically accurate. The instances were
generated by increasing the number of refuel tanks from
1 to 8. The CASP encoding was as discussed above, and
included a single, encoding-level heuristic stating that
actionstart(generate) must occur during the first state
transition and at timepoint 0. (dReal includes multiple
heuristics that are hard-coded in the solver.)

The execution times forEZCSPfor a fixed maximum
time step (Table1) ranged between 0.28 sec and 261.89
sec for the linear variant, and between 0.72 sec and
256.59 sec for the non-linear one. The non-linear vari-
ant was only tested up to instance 7 because of limita-
tions of the free version of GAMS. In both the linear
and non-linear case, theEZCSPencoding was substan-
tially faster than dReal. Especially remarkable is the
fact that, in both cases, dReal timed out on all instances
except for the first one.

The cumulative times forEZCSP(Table2) ranged be-
tween 0.89 sec and 292.22 sec for the linear case, with
no timeouts. In the non-linear case, the times were be-
tween 1.44 sec and 267.11 sec, with a timeout in in-
stance 8. UPMurphi did not scale as well. In the lin-
ear case, only instances 1-3 were solved, and resulted
in times ranging between 2.02 sec and 91.80 sec. The
speedup yielded byEZCSPreached about one order of
magnitude before UPMurphi began to time out. In the
non-linear case, UPMurphi timed out in all instances.

Car. The version of the car domain we used is the
same that was adopted in (Bryce et al. 2015). In this
domain, a vehicle needs to travel a certain goal distance
from its start position. The vehicle is initially at rest.
Two actions allow the vehicle to accelerate and to decel-
erate. The goal is achieved when the vehicle reaches the
desired distance and its speed is 0. In the linear variant,
accelerating increases the velocity by 1 and decelerating
decreases it by 1. In the non-linear variant, accelerating
increases the acceleration by 1, and similarly for decel-
erating. The velocity is influenced by the acceleration
according to the usual laws of physics. The calculation
also takes into account a drag factor equal to 0.1 ∙ v2.
The instances were obtained by progressively increas-
ing the range of allowed accelerations (velocities in the
linear version) from[−1,1] to [−8,8]. The CASP en-
coding leveraged no heuristics and, as discussed earlier,
the underlying solvers are completely general-purpose.

7

http://dreal.github.io/
http://www.gams.com/
http://www.picat-lang.org/bprolog/
http://sourceforge.net/projects/potassco/files/gringo/
http://sourceforge.net/projects/potassco/files/gringo/
http://mbal.tk/ezcsp/

Solutions

CSP

Ground
program

EZCSP Solver

CASP
Solution

Grounding
Tool

Integration
Module

ASP Solver
CSP

Translator
CP Solver

Plan
Extractor

Validation Module

PDDL+
plan VAL

PDDL+
Plan

Expander
Tool

Invariant
Violations

Expanded
Encoding

EZCSP
Program

Figure 3: Extended Solver Architecture

Domain Solver 1 2 3 4 5 6 7 8
Genlinear EZCSP 0.28 1.03 4.21 7.25 27.08 43.42 54.83 261.89

dReal 3.73 - - - - - - -
Gennon-linear EZCSP 0.72 1.62 0.68 1.05 87.95 256.59 238.93 *

dReal 8.18 - - - - - - -
Carlinear EZCSP 0.32 0.31 0.32 0.32 0.32 0.30 0.31 0.31

dReal 1.11 1.11 1.15 1.14 1.19 1.13 1.14 1.19
Carnon-linear EZCSP 0.71 0.68 0.29 0.39 0.25 0.25 0.26 0.84

dReal 58.21 162.60 - - - - - -

Table 1: Fixed time step. Results in seconds. Problem instances refer to number of tanks (generator) and max
acceleration (car).

Domain Solver 1 2 3 4 5 6 7 8
Genlinear EZCSP 0.89 1.92 5.46 9.93 30.79 50.25 67.97 292.22

UPMurphi 2.02 12.75 91.80 - - - - -
Gennon-linear EZCSP 1.44 2.44 13.10 53.70 88.58 267.11 250.03 -

UPMurphi - - - - - - - -
Carlinear EZCSP 1.01 0.98 1.04 0.99 0.91 0.85 0.88 0.83

UPMurphi 0.40 0.38 0.38 0.38 0.41 0.39 0.40 0.41
Carnon-linear EZCSP 2.32 1.49 1.14 1.85 1.14 1.18 1.06 2.13

UPMurphi 184.88 - - - - - - -

Table 2: Cumulative times. Results in seconds. Problem instances refer to number of tanks (generator) and max
acceleration (car).

As shown in Table1, the execution times forEZCSP
were around 0.30 sec for the linear case, and between
0.25 sec and 0.84 sec for the non-linear one. These
times are about 3 times faster than dReal in the linear
case and orders of magnitude better in the non-linear
case, where dReal times out in instances 3-8. The scal-

ability of EZCSPappears to be excellent, with no signif-
icant growth.

The comparison with UPMurphi on cumulative times
shows some interesting behavior. In the linear case,
EZCSPis, in fact, about 2.5 times slower than UPMur-
phi. The former has times ranging between 0.83 sec

8

and 1.04 sec, while UPMurphi’s times are between 0.38
sec and 0.41 sec. On the other hand,EZCSP outper-
forms UPMurphi in the non-linear case, with all in-
stances solved in times between 1.06 sec and 2.32 sec,
while UPMurphi only solves the first instance with a
time of 184.88 sec, i.e., nearly 2 orders of magnitude
slower thanEZCSP.

We believe the empirical results demonstrate the
promise of our approach. From the perspective of the
underlying solving algorithms, it is worth stressing that
the better results ofEZCSPover dReal are especially re-
markable given that the latter employs planning-specific
heuristics, while theEZCSPsolver and its components
are not specialized for a given reasoning task.

6 Conclusions

In this paper we have presented a new approach to
PDDL+ planning based on CASP languages that pro-
vides a solid basis for applying logic programming to
PDDL+ planning. Experiments on well-known do-
mains, some involving non-linear continuous change,
have shown that our approach outperforms comparable
state-of-the-art PDDL+ planners.

Although other CASP solvers exist,EZCSPis, to the
best of our knowledge, the only one supporting both
non-linear constraints, required for modeling non-linear
continuous change, and real numbers.

ACSOLVER (Mellarkod, Gelfond, and Zhang 2008b)
implements an eager approach to CASP solving, where
(in contrast to the lazy approach ofEZCSP) ASP and
CSP solving are tightly coupled and interleaved. It does
not support non-linear or global constraints, but allows
for real numbers.

CLINGON (Ostrowski and Schaub 2012b) is another
tightly coupled CASP solver. The available implemen-
tation, however, is not broadly applicable to the kinds
of problems considered in this paper. In fact,CLINGON
does not support non-linear constraints and real num-
bers. On the other hand, differently fromEZCSP, it al-
lows for numerical constraints both in the head of rules
and in their bodies.

A high level view of the languages and solving tech-
niques employed by these solvers can be found in (Lier-
ler 2014).

Finally, it is also worth noting that basing our ap-
proach on CASP makes it amenable to be expanded
to handle uncertainty about the initial situation or the
effects of actions (e.g., (Morales, Tu, and Son 2007)).
Another interesting possibility is the use of PDDL+ do-
main descriptions, translated to CASP, for both plan-
ning and diagnosis, along the lines of the approach ap-
plied in (Balduccini and Gelfond 2003a) to ASP domain
descriptions.

References

[Balduccini and Gelfond 2003a]Balduccini, M., and Gelfond,
M. 2003a. Diagnostic reasoning with A-Prolog.Journal

of Theory and Practice of Logic Programming (TPLP)3(4–
5):425–461.

[Balduccini and Gelfond 2003b]Balduccini, M., and Gelfond,
M. 2003b. Logic Programs with Consistency-Restoring
Rules. In Doherty, P.; McCarthy, J.; and Williams, M.-A.,
eds., International Symposium on Logical Formalization of
Commonsense Reasoning, AAAI 2003 Spring Symposium
Series, 9–18.

[Balduccini and Lierler 2013]Balduccini, M., and Lierler, Y.
2013. Integration Schemas for Constraint Answer Set Pro-
gramming: a Case Study.Theory and Practice of Logic Pro-
gramming (TPLP), On-line Supplement.

[Balduccini, Gelfond, and Nogueira 2006]Balduccini, M.;
Gelfond, M.; and Nogueira, M. 2006. Answer Set Based
Design of Knowledge Systems.Annals of Mathematics and
Artificial Intelligence47(1–2):183–219.

[Balduccini 2009] Balduccini, M. 2009. Representing Con-
straint Satisfaction Problems in Answer Set Programming. In
ICLP09 Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP09).

[Baselice, Bonatti, and Gelfond 2005]Baselice, S.; Bonatti,
P. A.; and Gelfond, M. 2005. Towards an Integration of
Answer Set and Constraint Solving. InProceedings of ICLP
2005.

[Bogomolov et al. 2014]Bogomolov, S.; Magazzeni, D.;
Podelski, A.; and Wehrle, M. 2014. Planning as model check-
ing in hybrid domains. InProceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Qúebec, Canada., 2228–2234.

[Bogomolov et al. 2015]Bogomolov, S.; Magazzeni, D.; Mi-
nopoli, S.; and Wehrle, M. 2015. PDDL+ planning with
hybrid automata: Foundations of translating must behav-
ior. In Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2015),
Jerusalem, Israel, June 7-11, 2015., 42–46.

[Bryce et al. 2015]Bryce, D.; Gao, S.; Musliner, D. J.; and
Goldman, R. P. 2015. Smt-based nonlinear PDDL+ planning.
In Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, January 25-30, 2015, Austin, Texas, USA.,
3247–3253.

[Chintabathina, Gelfond, and Watson 2005]Chintabathina,
S.; Gelfond, M.; and Watson, R. 2005. Modeling Hybrid Do-
mains Using Process Description Language. InProceedings
of ASP ’05 – Answer Set Programming: Advances in Theory
and Implementation, 303–317.

[Coles et al. 2012]Coles, A. J.; Coles, A.; Fox, M.; and Long,
D. 2012. COLIN: Planning with continuous linear numeric
change.Journal of Artificial Intelligence Research44:1–96.

[Della Penna et al. 2009]Della Penna, G.; Magazzeni, D.;
Mercorio, F.; and Intrigila, B. 2009. UPMurphi: A tool
for universal planning on PDDL+ problems. InProceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS 2009). AAAI.

[Fox and Long 2006]Fox, M., and Long, D. 2006. Modelling
mixed discrete-continuous domains for planning.Journal of
Artificial Intelligence Research27:235–297.

[Fox, Howey, and Long 2004]Fox, M.; Howey, R.; and Long,
D. 2004. VAL: Automatic Plan Validation, Continuous Ef-
fects and Mixed Initiative Planning Using PDDL. In16th
IEEE International Conference on Tools with Artificial Intel-
ligence (ICTAI 2004), 294–301.

9

[Gelfond and Lifschitz 1991]Gelfond, M., and Lifschitz, V.
1991. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing9:365–385.

[Gelfond and Lifschitz 1993]Gelfond, M., and Lifschitz, V.
1993. Representing Action and Change by Logic Programs.
Journal of Logic Programming17(2–4):301–321.

[Henzinger 1996]Henzinger, T. A. 1996. The theory of hy-
brid automata. InProceedings of the 11th Annual IEEE Sym-
posium on Logic in Computer Science (LICS 1996), 278–292.

[Kautz and Selman 1992]Kautz, H. A., and Selman, B. 1992.
Planning as satisfiability. InECAI, 359–363.

[Li and Williams 2008] Li, H. X., and Williams, B. C. 2008.
Generative planning for hybrid systems based on flow tubes.
In Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E. A.,
eds.,Proceedings of the Eighteenth International Conference
on Automated Planning and Scheduling (ICAPS 2008), 206–
213. AAAI.

[Lierler 2014] Lierler, Y. 2014. Relating constraint answer
set programming languages and algorithms.Artificial Intelli-
gence207:1–22.

[Lifschitz 1999] Lifschitz, V. 1999. The Logic Programming
Paradigm: a 25-Year Perspective. Springer Verlag, Berlin.
chapter Action Languages, Answer Sets, and Planning, 357–
373.

[Lifschitz 2002] Lifschitz, V. 2002. Answer set programming
and plan generation.Artificial Intelligence138:39–54.

[McDermott 2003] McDermott, D. V. 2003. Reasoning about
autonomous processes in an estimated-regression planner. In
Giunchiglia, E.; Muscettola, N.; and Nau, D. S., eds.,Pro-
ceedings of the Thirteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2003), 143–152.
AAAI.

[Mellarkod, Gelfond, and Zhang 2008a]Mellarkod, V. S.;
Gelfond, M.; and Zhang, Y. 2008a. Integrating Answer Set
Programming and Constraint Logic Programming.Annals of
Mathematics and Artificial Intelligence.

[Mellarkod, Gelfond, and Zhang 2008b]Mellarkod, V. S.;
Gelfond, M.; and Zhang, Y. 2008b. Integrating answer set
programming and constraint logic programming.Annals of
Mathematics and Artificial Intelligence53(1-4):251–287.

[Morales, Tu, and Son 2007]Morales, R.; Tu, P. H.; and Son,
T. C. 2007. An Extension to Conformant Planning Using
Logic Programming. In Veloso, M. M., ed.,Proceedings of
the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI’07), 1991–1996.

[Nau, Ghallab, and Traverso 2004]Nau, D.; Ghallab, M.; and
Traverso, P. 2004.Automated Planning: Theory & Practice.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[Ostrowski and Schaub 2012a]Ostrowski, M., and Schaub, T.
2012a. ASP Modulo CSP: The Clingcon System.Journal
of Theory and Practice of Logic Programming (TPLP)12(4–
5):485–503.

[Ostrowski and Schaub 2012b]Ostrowski, M., and Schaub, T.
2012b. ASP modulo CSP: the clingcon system.TPLP12(4-
5):485–503.

[Penberthy and Weld 1994]Penberthy, J. S., and Weld, D. S.
1994. Temporal planning with continuous change. In Hayes-
Roth, B., and Korf, R. E., eds.,Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI 1994),
1010–1015. AAAI Press / The MIT Press.

[Reiter 2001] Reiter, R. 2001.Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dy- namical
Systems. MIT Press.

[Rossi, van Beek, and Walsh 2006]Rossi, F.; van Beek, P.;
and Walsh, T., eds. 2006.Handbook of Constraint Program-
ming, volume 2 ofFoundations of Artificial Intelligence. El-
sevier.

[Shin and Davis 2005]Shin, J.-A., and Davis, E. 2005. Pro-
cesses and continuous change in a SAT-based planner.Artifi-
cial Intelligence166(1-2):194–253.

10

	Introduction
	Background
	PDDL+ Planning
	Answer Set Programming
	Constraint ASP

	Encoding PDDL+ Models into CASP Problems
	Domain Encoding
	Problem Encoding
	Planning Task

	Case Study
	Experimental Results
	Conclusions

